-
-
-
Tổng tiền thanh toán:
-
Tuyển tập thi thử vào 10 toán Hà Nội 2021 có đáp án chi tiết
28/04/2021 Đăng bởi: cầu Công ty cổ phần CCGroup toànĐã có nhiều tỉnh thành trên cả nước chốt phương án thi tuyển sinh vào lớp 10 trong đó có Hà Nội. Năm nay Hà Nội vẫn sẽ thi 4 môn gồm Toán, Ngữ văn, Tiếng Anh và môn thi thứ tư sẽ công bố vào tháng 3. Theo đó, các trường THCS cũng đã tiến hành các đợt thi thử lần 1 dành cho 3 môn chính. Dưới đây là tổng hợp bộ đề thi thử vào 10 toán Hà Nội lần 1 kèm đáp án chi tiết của một số tỉnh, giúp 2k6 chuẩn bị ôn tập cho kì thi vào 10 sắp tới.
Giải chi tiết bộ 3 đề thi thử vào 10 toán đợt cuối (cập nhật tháng 7/2020)
6 đề thi thử vào 10 môn toán hà nội có đáp án: cập nhật T6/ 2020
Tuyển tập 7 đề thi thử vào 10 môn toán 2019 có đáp án chi tiết: Long An, Sóc Trăng, Đồng Nai
Đề thi thử vào 10 môn toán 2020: Bộ 5 đề có kèm đáp án
Bộ 6 đề thi vào 10 môn toán có đáp án chi tiết - ôn thi THPT công lập và Chuyên
Đề thi thử vào lớp 10 môn toán: Bộ 4 đề chuẩn có đáp án chi tiết
Đề thi thử vào 10 Toán Hà Nội THCS Thành Công – Ba Đình
Phần đề thi thử vào 10 toán Hà Nội
Bài 1: Cho hai biểu thức A và B
a, Tính giá tri biểu thức A tại x = 4
b, Rút gọn biểu thức B
c, Cho P = A:B. Chứng minh rằng 0 < P ≤ 2
Bài 2 THCS Thành Công – Ba Đình: (2 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Một mảnh vườn hình chữ nhật có diện tích bằng 192 m². Nếu tăng chiều rộng của mảnh vườn thêm 1m và chiều dài của mảnh vườn giảm đi 3m thì ta được một mảnh vườn hình vuông. Tính chiều dài, chiều rộng của mảnh vườn lúc ban đầu.
Bài 3 thi thử vào 10 toán Hà Nội (2 điểm)
1, Cho ba đường thẳng (d1): y = x+2; (d2): y = 2x+1; (d3): y = (m2+1)x + m (m là tham số). Tìm m để ba đường thẳng (d1), (d2), (d3) đồng quy tại 1 điểm.
2, Cho phương trình x2 – 20x + m + 5= 0 (*) với m là tham số.
a) Giải phương trình với m = 14
b) Tìm m để phương trình (*) có hai nghiệm phân biệt x1, x2 là các số nguyên tố.
Bài 4 (3,5 điểm)
Cho nửa đường tròn (O;R), đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó tại A (Tia Ax thuộc nửa mặt phẳng bờ AB chứa nửa đường tròn). Từ điểm M bất kì trên tia Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (O) (C là tiếp điểm), AC cắt OM tại E, MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh tứ giác AMCO nội tiếp
b) Chứng minh AC2 = 4ME.EO
c) Chứng minh △ADE = △ACO
d) Vẽ CH vuông góc với AB (H thuộc AB). Gọi I là giao điểm của CH và MB. Tiếp tuyến tại B của nửa đường tròn (O) cắt tia MC tại điểm G.
Chứng minh ba điểm A, I, G thẳng hàng.
Bài 5 thi thử vào 10 toán Hà Nội THCS Thành Công – Ba Đình (0.5 điểm) Cho các số thực thỏa mãn x2 + y2 – xy = 4
Tìm GTLN và GTNN của biểu thức P = x2 + y2
Đáp án chi tiết cho toàn bộ đề thi thử vào 10 môn toán THCS Thành Công – Ba Đình
Bài 1:
a, Thay x = 4 vào biểu thức A, ta được A = ½
b, Phân tích mẫu thành tử, quy đồng mẫu rồi rút gọn ra kết quả
c, Tính P rồi chứng minh P > 0 và P ≤ 2
Bài 2:
Gọi chiều dài và chiều rộng của mảnh vườn lúc ban đầu lần lượt là x,y (m) (x > 3; x > y > 0)
Mà mảnh vườn hình chữ nhật có diện tích bằng 192 m2
Nên ta có pt xy = 192 (1)
Nếu tăng chiều rộng của mảnh vườn thêm 1m và chiều dài của mảnh vườn giảm đi 3m thì chiều rộng mới là y+1 (m) và chiều dài mới là x-3 (m). Ta được mảnh vườn mới có hình vuông nên ta có pt x – 3 = y + 1 hay x – y = 4 (2)
Từ (1) và (2) ta có hệ phương trình bậc nhất hai ẩn
Giải hệ phương trình ta có x = 16, y = 12
Đáp án trang 1 của đề thi thử vào 10 môn toán THCS Ba Đình Hà Nội
Bài 3 thi thử vào 10 toán Hà Nội THCS Thành Công – Ba Đình:
1, tìm tọa độ giao điểm của (d1) và (d2) là A (1;3)
Để ba đường thẳng đồng quy tại 1 điểm thì A cũng thuộc đường (d3). Thay tọa độ của điểm A vào hệ phương trình, ta ra được hai kết quả của tham sô m là 1 và -2. Nhưng giá trị m = 1 không thỏa mãn điều kiện đề bài nên chỉ còn giá trị m = 2 thỏa mãn. Vậy m = 2
2a, Với m = 14 thì pt có nghiệm x = 1; x = 19
2b, Để pt (*) có hai nghiệm phân biệt thì A'>0 tương đương với m < 95
Theo định lí Vi ét ta có x1 + x2 = 20 và x1 x2 = m + 5
Vì x1 x2 là số nguyên tố mà x 1 + x2 = 20
Nên x1, x2 lần lượt nhận cặp giá trị (3; 17) và (7; 13)
Thay lần lượt các giá trị này vào x1 x2 = m + 5 ta có m = 46 và m = 86
Trang 2 đáp án đề thi thử vào 10 môn toán THCS Ba Đình 2020 - Hà Nội
Bài 4 thi thử vào 10 toán Hà Nội THCS Thành Công – Ba Đình
a, Lập luận được MAO = MCO = 90 độ
Chứng minh tứ giác AMCO nội tiếp
b, chứng minh MO vuông góc với AC tại E suy ra AC = 2 AE
Chứng minh AE2 = EM. EO
Chứng minh AC2 = 4 EM . EO
c, Chứng minh tứ giác AEDM nội tiếp AEDM nội tiếp
Suy ra AME = ADE (1)
Tứ giác AMCO nội tiếp = AMO = ACO (2)
Từ (1) (2) suy ra đpcm
Đáp án trang số 3 của đề thi thử vào 10 môn Toán THCS Ba Đình
d, Kéo dài BC cắt Ax tại N. Chứng minh M là trung điểm của AN
+ Chứng minh CH // AN để dùng Ta lét trong hai tam giác BMA và tam giác BMN, ta có BI/ BM = HI/ AM và BI/ BM = CI/ MV
Từ đó suy ra HI = CI. Suy ra I là trung điểm của CH.
+ Tia CA cắt By tại F. Chứng minh G là trung điểm của BF
+ Giả sử AG cắt CH tại I. Chứng minh I là trung điểm của CH ( dựa theo định lí Talet)
BI = I'. Vậy A, I, G thẳng hàng
Đáp án trang số 4 của đề thi thử vào 10 môn toán thcs ba đình
Bài 5 thi thử vào 10 toán Hà Nội THCS Thành Công – Ba Đình
Ta có x2 + y2 – xy = 4.
2x2 + 2y2 – 2xy = 8 tương đương với x2 + y2 + x – y = 8
Tương đương P = 8 – x – y2
Lập luận P ≤ 8
Dấu bằng xảy ra khi và chỉ khi xảy ra đồng thời
(1) x – y = 0
(2) x2 + y2 – xy = 4
P đạt GTLN bằng 8 khi x = y = 2 hoặc x = y = -2
x2 + y2 - xy = 4 tương đương 2x2 + 2y2 - 2xy = 8 tương đương 3x2 + y2 – x + y2 = 8
tương đương 3P = 8 + x + y2
Dấu bằng xảy ra khi và chỉ khi đồng thời
x + y = 0
x2 + y2 – xy = 4
P đạt GTNN bằng ý khi x = 2/ căn 3; y = - 2/ căn 3 hoặc ngược lại
Đề thi thử vào 10 toán Hà Nội THPT Việt Đức
Bài 1 câu b: giải hệ phương trình gồm 2 phương trình
Phương trình 1: x (x-1) + y = (x+1)(x-3)
Phương trình 2: 2x – 3y = -1
Bài 3 thi thử vào 10 toán Hà Nội THPT Việt Đức Hà Nội là một bài giải bằng phương pháp lập phương trình/ hệ phương trình
Một chiếc thuyền khởi hành từ bến sống A sau 5h 20 phút, một ca nô từ bến A đuổi theo và gặp thuyền tại vị trí B cách bến A 20km. Hãy tìm vận tốc của chiếc thuyền biết rằng trong 1h thì ca nô chạy hơn thuyền 12km
Bài 4: Cho nửa đường tròn đường kính AB và một điểm M bất kì trên nửa đường tròn đó (M khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn người ta vẽ tiếp tuyến Ax. Tia BM cắt tia Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tai E, cắt tia BM tại F, tia BE cắt Ax tại H, cắt AM tại K
Bài hình gồm có 4 câu hỏi nhỏ như sau
a, chứng minh rằng IA2 = IM. IB
b, chứng minh tam giác BAF cân
c, chứng minh tứ giác AKFH là hình thoi
d, xác định vị trí M để tứ giác AKFI nội tiếp được đường tròn
Mới! CC Thần tốc luyện đề 2022 giải pháp giúp sĩ tử TĂNG ĐIỂM CHẮC CHẮN TRONG THỜI GIAN NGẮN (12/01/2022)
Đột phá 8+ phiên bản mới nhất có gì khác biệt so với phiên bản cũ? (21/08/2021)
Giới thiệu bộ sách Đột phá 8+ phiên bản mới dành riêng cho 2K4 (03/08/2021)
Đề thi và đáp án đề thi THPT Quốc gia 2021 môn GDCD (08/07/2021)